Solid Temperature Material¶
SolidTemperatureMaterial defines the thermal properties on a marked region of
the domain.
It binds a Marker to the material laws used
by the solid temperature model.
The material provides:
- thermal conductivity material property \(\kappa\) [\(\rm{W}/(\rm{m} \cdot \rm{K})\)]
- specific heat capacity material property \(c_p\) [\(\rm{J}/(\rm{kg} \cdot \rm{K})\)]
- density method material property \(\rho\) [\(\rm{kg}/\rm{m}^3\)]
For steady problems, \(\kappa\) is required. For unsteady problems, the heat storage term uses the volumetric heat capacity \(\rho c_p\).
SolidTemperatureMaterial(
name: str,
marker: Marker,
thermal_conductivity: ThermalConductivityPropertyMethodTrait,
specific_heat_capacity: SpecificHeatCapacityPropertyMethodTrait,
density: DensityPropertyMethodTrait,
)
Args:
- name: Name of the material
- marker: Marker of the volume region
- thermal_conductivity: Thermal conductivity method
- specific_heat_capacity: Specific heat capacity method
- density: Density method
Material Properties¶
Thermal Conductivity¶
Thermal conductivity controls heat conduction via Fourier’s law \(\vec{q}=-\kappa\nabla T\).
| Name | Example | Description |
|---|---|---|
| Constant |
|
Specify a constant, isotropic thermal conductivity \( \kappa = \kappa_0 \) over the marked region. |
| Linear Temperature Coefficient |
|
Specify an isotropic conductivity with a linear temperature dependence
\( \kappa(T) = \kappa_0 + \alpha (T - T_{\text{ref}}) \), where:
|
| Temperature Table |
|
Temperature-dependent conductivity \( \kappa(T) \) defined by a table (interpolated in \( T \)). |
Specific Heat Capacity¶
Specific heat capacity controls transient heat storage via \(\rho c_p \,\partial T / \partial t\). It is provided as a scalar coefficient.
| Name | Example | Description |
|---|---|---|
| Constant |
|
Specify a constant heat capacity \( c_p = c_{p,0} \) over the marked region. |
| Linear Temperature Coefficient |
|
Specify a heat capacity with a linear temperature dependence
\( c_p(T) = c_{p,0} + \alpha (T - T_{\text{ref}}) \), where:
|
| Temperature Table |
|
Temperature-dependent heat capacity \( c_p(T) \) defined by a table (interpolated in \( T \)). |
Density¶
Density contributes to thermal storage via \( \rho c_p \) and is provided as a scalar coefficient.
| Name | Example | Description |
|---|---|---|
| Constant |
|
Specify a constant density \( \rho = \rho_0 \) over the marked region. |
Notes¶
- The unsteady term uses the product \(\rho c_p\) (volumetric heat capacity). If either \(\rho\) or \(c_p\) depends on \(T\), the transient problem becomes nonlinear.